
 1 

 
 

 
 
 
 
 
 

Performance Analysis of 
Control Algorithms for 

FalconSat-3 
 
 
 
 
 

Paul Tisa, Dr. Paul Vergez 
USAF Academy Dept. of Astronautics 

2354 Faculty Drive 
USAF Academy CO 80841 

719-333-2668 
c06paul.tisa@usafa.edu, paul.vergez@usafa.edu 

 
 
 
 
 
 

 Paper AAS 06-149 

16th AAS/AIAA Space Flight 
Mechanics Conference 

Tampa, Florida January 22-26, 2006 
 

AAS Publications Office, P.O. Box 28130, San Diego, CA 92198 



 2 

ABSTRACT 
FalconSat-3 is the United States Air Force 
Academy’s first attempt at three-axis attitude 
determination and control.  This requirement is 
a product of the three US Department of 
Defense payloads the satellite will carry, 
which are the Micro Propulsion Attitude 
Control System (MPACS), the Flat Plasma 
Spectrometer (FLAPS), and the Plasma Local 
Anomalous Noise Environment (PLANE).  
Most restrictively, FLAPS requires ± one 
degree attitude determination within two 
standard deviations and ± five degrees attitude 
control within one standard deviation of ram 
direction.  The following paper gives a cursory 
background into FalconSat-3; followed by a 
brief explanation into the development of a 
Simulink model in MATLAB.  The main focus 
is the utilization of the Simulink model to test 
the implementation and performance of the 
following controllers: proportional-derivative 
(PD), proportional-integral-derivative (PDI), 
separate pitch from roll/yaw, linear quadratic 
regulator (LQR), B-dot, spin rate, cross 
product law, and “bang-off-bang”.  The “bang-
off-bang” controller is used in conjunction 
only with FalconSat-3’s pulse plasma thrusters 
not the magnetorquers like the other 
controllers.  As such, it is discrete not 
continuous, and its implementation is quite 
different than the rest.   
 
By the end of the analysis, several advantages 
and disadvantages of each controller were 
divulged.  Ultimately, while many of the 
control algorithms could be used to meet 
FalconSat-3’s attitude control requirements, 
proper integration of the B-dot, spin rate, and 
cross product law controllers yielded the best 
balance between competing performance 
characteristics.   
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INTRODUCTION 
FalconSat-3 is the most recent satellite project 
undertaken by the United States Air Force 
Academy.  Many subsystems are being 
advanced in their complexity from FalconSat-
2, but of main concern for this research is the 
requirement change from simplified two- to 
three-axis attitude control.  Specifically, the 
satellite’s controller must be able to maintain ± 
five degrees attitude control within one 
standard deviation of ram direction using the 
satellite’s magnetorquers.  While previous 
research has shown that this is possible, 
comparing the performance of several 
controllers to determine the best choice has 
never been conducted.  The first step in 
successfully carrying out this task is to 
understand the system that must be controlled 
and the available actuators that must do the 
controlling. 

FALCONSAT-3 BACKGROUND 
By industry standards with a mass of 46.1 kg, 
FalconSat-3 is considered a micro satellite6.  It 
has five payloads, three with attitude 
requirements, with the most arduous 
requirement coming from FLAPS, Flat Plasma 
Spectrometer.  The pertinent satellite 
properties and spatial dimensions are 
summarized in Table 1 and Figure 1, 
respectively. 
 

TABLE 1: FALCONSAT-3 PROPERTIES 

Body Mass: 35.5 kg 
Boom and Tip 
Mass: 10.6 kg 

Total Mass: 46.1 kg 
Pre-boom Inertia ♣[ ] 231.169.364.3 mkg −  

Post-boom Inertia ♣ [ ] 231.145.6740.67 mkg −  
Coefficient of 
Drag 2.6 

Spacecraft Dipole 0.05 A-m2 

Orbital 
Characteristics: 

Altitude = 560 km 
Inclination = 0° 
Eccentricity = 0 

♣ = Products of inertia are all zero and are left out, the displayed values 

are for the moments of inertia only 
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Figure 1: FalconSat-3 Configuration4 

 
As seen in Figure 1, FalconSat-3 has a gravity 
gradient boom, a passive actuator.  The 
satellite’s main active actuators are three 
magnetorquers with a configurable dipole 

moment of 3.0 A-m2.  Their orientation with 
respect to the spacecraft’s body frame is not 
important for this discussion. 
 
The other active actuators on FalconSat-3 are 
the pulse plasma thrusters (PPTs), which are 
located on the satellite’s earth facing facet 
during nominal operation.  Previous research 
has shown they are effective enough to be used 
for attitude control during the satellite’s 
operational lifetime.  However, their main 
purpose is to demonstrate an ability to affect 
FalconSat-3’s attitude and will not be relied on 
as a primary actuator for the spacecraft.  As 
such, most research has focused on the 
magnetorquers. 

COORDINATE FRAMES  
An area of primary importance to define is the 
utilized coordinate systems.  Throughout the 
simulation and algorithms, the three primary 
coordinate frames are inertial, local orbital, 
and body.  Their characteristics are 
summarized in Table 2 and the relationships 
between the frames are visually displayed in 
Figures 2 and 3. 

 

TABLE 2: COORDINATE FRAMES DEFINED 

Name Origin Fundamental 
Plane 

1st 
Axis Definition 2nd 

Axis Definition 3rd 
Axis Definition 

Earth-
Centered, 

inertial 

Center of 
Earth 

Earth’s mean 
equator I 

Direction of 
mean vernal 

equinox 
K 

Direction of 
mean rotational 

axis (N is +) 
J 

Completes 
right-hand 

system 

Local 
Orbital 

Satellite 
center of 

mass 

Satellite’s 
orbital plane P Ram 

direction Q 

Direction of 
orbit normal 

( ⊕N  is + 
R 

Completes 
right-hand 

system 

Body 
Satellite 
center of 

mass 

Parallel to 
satellite’s base 

plate 
X 

Parallel to 
base plate 
(PLANE is 

+) 

Z 

Parallel to 
boom 

(Deployment is 
+) 

Y 
Completes 
right-hand 

system 
 

Local Orbital and Earth Inertial

Local Orbital 
Frame

+PLO 
(Orbital 
Tangent)

+QLO 
(Orbit 
Normal)

+RLO 
(Radial/
Zenith)

Orbital Path →

 
Figure 2: Illustration of FalconSat-3’s Local Orbital 

and Inertial Frames4 

Local Orbital 
Frame

+XBY (Roll)

+YBY (Pitch)

+ZBY (Yaw) Spacecraft ADCS 
Body Frame

+PLO 
(Orbital 
Tangent)

+QLO 
(Orbit 
Normal)

+RLO 
(Radial/
Zenith)

Body and Local Orbital Frame

Orbital Path →

Note:  During Operational Mode 
the Euler Angles between the 
Body and Orbital frames will 

ideally be zero

 
Figure 3: Illustration of FalconSat-3's Body and Local 

Orbital Frames1 
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It is important to note that many of the most 
important sources for this work define the 
body coordinate system differently.  In their 
works listed in the reference section, Dr. 
Vaios, Dr. Hashida, and Dr. Steyn define the z-
body axis as parallel to the boom but positive 
towards the earth.  The x-body axis is just as 
defined in this paper, which means to maintain 
a right handed coordinate system, the y-axis is 
opposite FalconSat-3’s y-body axis3,6,7. 
 
There are several more frames of debatable 
value that are left out.  As mentioned 
previously, the magnetorquers and 
magnetometer are not truly aligned with the 
spacecraft’s body frame.  Especially because 
of the focus of this paper, there is a great 
concern over information coming from the 
magnetometer and going to the magnetorquers.  
Technically, coordinate frames should be 
defined for each magnetorquer and for the 
magnetometer, and any data passed to or from 
these instruments should be transformed to the 
appropriate coordinate frame.  However, as 
every controller tested suffers from this same 
error, its effect on each controller’s 
performance is assumed to be the same. 

MODEL DYNAMICS 
Delving into explicit particulars of all the 
model dynamics would disrupt the purpose of 
this paper, but there are a some critical details 
that are necessary for clarity. 
 
Three positive right hand rotations can be 
defined by Euler angles to go from the orbital 
to body frame.  For FalconSat-3, the 2-1-3 
rotation used by previous ADCS researchers 
was maintained and formed the following 
direction cosine matrix, C: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θφφ−θφ
θφψ+θψφψθφψ+θψ−
θφψ+θψ−φψθφψ+θψ

=
CCSSC

CSCSSCCSSCCS
CSSSCCSSSSCC

C O
B  

(1)7 
 
, where C is the cosine function and S is the 
sine function.  ψθφ ,,  are roll, pitch, and yaw, 
respectively.  There are a number of rotation 
combinations that will end with the same 
results.  However after this is converted to its 
appropriate quaternion counterpart, to 
eliminate singularities present in the Euler 
angles, intermediate values will change based 
upon the rotation used.  Quaternion attitude for 
a 2-1-3 rotation is defined as: 
 

4
1 q

)(S)(C)(S)(C)(S)(Sq φ+θφψ+θψ
=  (2),  

 

4
2 q

)(C)(S)(S)(S)(C)(S)(Cq θφψ−θψ+θφ
=  (3),  

 

4
3 q

)(C)(S)(S)(C)(S)(C)(Sq ψθφ−θψ+φψ
=  (4),  

 
)(C)(C)(C)(C)(S)(S)(S)(C)(C1*

2
1q 4 φθ+φψ+θφψ+θψ+−=

(5) 
 

, where the used nomenclature has q4 as the 
scalar component. 
 
The rotation matrix in quaternion form is: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−−−+
++−+−−
−++−−

=
2
4

2
3

2
2

2
141324231

4132
2
4

2
3

2
2

2
14321

42314321
2
4

2
3

2
2

2
1

/

)(2)(2
)(2)(2
)(2)(2

qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq

C OB

 (6)7 

 
To return to Euler angles from quaternion 
attitude, the simulation used the following 
relationships: 
 
       )2sin( 4132 qqqqa −−=φ          (7) 
 

  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−−

+
=θ 2

4
2
3

2
2

2
1

4231

qqqq
)qqqq(22tana   (8) 

 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−

+
= 2

4
2
3

2
2

2
1

4321 )(22tan
qqqq

qqqqaψ  (9) 

 
, where atan2 is a tangent function with bounds 
between -180° and 180° instead of -90° and 
90°. 
 
The plant equation used to model the motion 
of FalconSat-3 is: 
 

I
B

I
B

I
BPPTMT

I
B IINNI ωωωω

r&rr&r −×−+=  (10)7 

 
, where I

Bω
r

 equals an angular body rate vector 
with respect to the inertial frame, I is the 3x3 
inertia matrix, NMT is the magnetorquer vector, 
and NPPT is the PPT vector. 
 
The quaternion attitude was updated through 
the following equation: 
 
  qq Ω=

2
1&r          (11)7 
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, where 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−

−
−

=Ω

0
0

0
0

O
z

O
y

O
x

O
z

O
x

O
y

O
y

O
x

O
z

O
x

O
y

O
z

ωωω
ωωω
ωωω
ωωω

 (12)7, 

 

, where OOBI
B

O
z

O
y

O
x

O C 0
/ ωω

ω
ω
ω

ω
rrr

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=  (13) and 

 

       

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0

0

00
OO ωω

r  (14) and 
30 a

O ⊕=
μω .(15) 

 
The only other general equation worth 
mentioning is how to calculate quaternion 
error.  The controllers’ responses are all related 
to quaternion and/or rate error, so it is a crucial 
concept.  For both, the idea is to subtract the 
measured from commanded in the same 
coordinate frame to determine the error vector.  
Equations 16 and 17 illustrate how this is done 
for both the rates and quaternion attitude:  
 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
cmd
xz

cmd
xy

cmd
xx

e

ωω
ωω
ωω

ω
r                  (16) 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=−

4

3

2

1

4321

3412

2143

1234

4

3

2

1

41,

q
q
q
q

qqqq
qqqq
qqqq
qqqq

q
q
q
q

q

cmdcmdcmdcmd

cmdcmdcmdcmd

cmdcmdcmdcmd

cmdcmdcmdcmd

e

e

e

e

e
r

     (17)6 

 

SIMULATION BASICS 
Without getting into unnecessary detail, it is 
important to include the limitations and 
nomenclature of the developed Simulink 
model to draw proper conclusions from the 
results.  A figure of the current model is posted 
in Appendix A.  Figure 4 gives a simplified 
overview of the simulation parts. 
 

Figure 4: Block Diagram of Simulation 

 
There are several important limitations in the 
model that are prevalent from the above 
diagram.  First, the “B-field Generator” block 
is really an orbit propagator that calculates the 
magnetic field vector in the inertial frame that 
is later transformed into the necessary 
coordinate frame.  However, at the time of the 
controller testing, the orbit propagator does not 
account for any perturbations or allow the 
inputs to change over time in any other 
manner.  For example, during the actual 
operation of FalconSat-3, new two-line 
elements, TLEs, will be sent to the satellite 
every two weeks.  As such, error in the 
generated magnetic field vectors will increase 
as the simulation continues.  While untested, 
this was not perceived as a significant source 
of error while testing different controllers 
because it would slowly affect each in the 
same way. 
 Second, there are torques acting 
besides those put on the system by the 
currently tested controller and actuator.  
Gravity gradient and disturbance torques were 
left out of this research as they were not 
correctly modeled when testing started.  After 
they were modeled more accurately, they were 
left out as it was assumed there effect on the 
system would be similar for every controller. 
 Next, the magnetorquers were 
modeled as perfect actuators at this point in 
design.  An expectable amount of torque from 
the torque rods was calculated to be 9.93*10-5 
N-m2 through the equation: 
 
  DBT =                          (18)8 

 
, where “T” equals torque in N-m, “B” is 
Earth’s worst case magnetic field at an 
inclination of 35° in tesla, and “D” is the 
magnetorquer’s dipole moment in A-m2.  The 
magnetic field was calculated by interpolating 
the magnetic field over the equator, 

TRM 53 10*38.2/ −= , and over the poles, 
TRM 53 10*77.4/2 −=  for a satellite with the 

same altitude but with FalconSat-3’s 
inclination. 
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Another important point of consideration is the 
sensor block, which during testing was 
simplified to a perfect sensor.  During real 
operation, the sensors would generate noise 
and imperfections in the information.  
However, during actual operation, FalconSat-3 
would have a Kalman filter implemented that 
would assist in the detrimental effects of 
imperfect sensor and propagator data.  It would 
calculate best guess data to pass back to the 
controller.  As the focus of this research was 
on the controllers, both the filter and imperfect 
sensors were excluded.  The comparative 
difference in the controllers’ performance was 
assumed negligible.   

THEORY 

Proportional-Derivative (PD) 
The PD control implemented in the model was 
the simplest controller possible.  It is a 
variation of the cross product law controller as 
outlined by Dr. Hashida.  Instead of using the 
calculated error vector to determine the most 
favorable magnetorquing direction, it is 
directly utilized as the commanded torque 
vector.  The error/commanded torque vector is 
determined through the following equation: 
 
     edep KKu ωα

rrr
−−=        (19)3 

 
, where 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
cmd

cmd

cmd

e

33

22

11

ψψ
θθ
φφ

α
r  (20),   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
cmd
zz

cmd
yy

cmd
xx

e

ωω
ωω
ωω

ω
r  (21),  

 
and Kp and Kd are the proportional and 
derivative gain matrices, respectively.  The 
gain matrices were chosen based on the 
performance of the system acquired from 
previous tests. 

Proportional-Integral-Derivative (PID) 
The PID controller had only two differences to 
the PD.  First, the position error vector was not 
determined by first converting the quaternion 
attitude to Euler angles.  The error between the 
commanded and measured quaternion attitude 
was determined by the before mentioned 
matrix.  The scalar component of the error 
vector was excluded while the other three parts 
were passed on to determine the total error 
vector calculation.   
 
Second, its error vector determination included 
an integrator term, altering the calculation to: 
 

 
edeiep KqKqKu ω
rrrr

−−−= ∫ −− 31,31,
 (22)6 

 
, where everything is defined as in the PD 
controller except the quaternion error vector 
and the integral gain matrix, Ki.  Once again, 
the gain matrices were chosen based on the 
performance of the system acquired from 
previous tests. 

Separate Pitch and Roll/Yaw 
Starting with the basic equation of motion, 
circular orbit, small angle, and insignificant 
higher order terms assumptions are made.  
This allows the separation of the pitch axis 
EOM from the roll/yaw EOM.  Continuing the 
derivation, FalconSat-3’s plant can eventually 
be modeled in the Laplace domain.  The pitch 
and roll/yaw characteristic equations in the s-
plane respectively are: 
 
 0)()(3

2

312
0

2 =
−

+
I

IIs Oω             (23)9 

 
0)(4))(31( 4

031
22

0311
4 =++++ OO kkskkks ωω (24)9 

 
, where 

1

32
1 I

IIk −
=  (25)9 and 

3

12
3 I

IIk −
=  (26)9.  

For the pitch equation, I1 must be greater than 
I3 for purposes of stability.  The following 
criteria must be met to have stability in the 
roll/yaw equation: 031 >kk  (27)9, 

031 311 >++ kkk  (28)9, and 

016)31( 31
2

311 >−++ kkkkk  (29)9.  Because of 
this criteria and the physical properties of 
FalconSat-3, I1=Ix, I2=Iy, and I3=Iz. 
 
Ultimately, this approach only redefines the 
system’s plant.  Other design methods, such as 
PD and PID, must still be used to create a 
controller.  Greater detail on the derivation of 
the equations and material contained in this 
section is found in chapter 6 of Bong Wie’s 
work sited in the References section. 

Linear Quadratic Regulator Theory (LQR) 
LQR is a modern control, time domain 
technique that originates with basic state-space 
modeling: 
 

)()()( tButAxtx +=&  (30) DtCxty += )()(  (31) 
 

, where x(t) is a vector of system states, u(t) is 
a controller input vector, and y(t) is a vector of 
outputs.  For easier reading, x(t), u(t), and y(t) 
vectors are no longer explicitly written as 
functions of time. 
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 LQR begins with the basic feedback 
control algorithm of: 
 
             Kxu −=        (32)9 

 
, where K is a matrix of gains, which is chosen 
to minimize a performance index algorithm, 
such as: 
 
 ∫

∞
+=

0
)(

2
1 dtRuuQxxJ tt               (33)9 

 
, where Q is known as the state weighting 
matrix and R is the control input weighting 
matrix.  Minimizing Equation 33 yields: 
 
          SBRK t1−=       (34)9 

 
, where S is a matrix that satisfies the Riccati 
equation: 
 
 QSBSBRSASA tt +−+= −10    (35)9 

B&  Controller 
The B-dot controller is one of the most 
common controllers used to stabilize 
spacecraft with magnetorquers3.  Equation 36 
can be used to activate the i-axis magnetorquer 
to damp out the j- and k-axes angular velocity 
at the same time: 
 
              B

idi BKM &−=      (36)3 

 
, where Kd is a positive controller gain and Bi 
is the i-component of the magnetic field vector 
in the body coordinate system.  In practice, 

B
iB&  is obtained by the approximation: 

 
          

t
BB

B
B
ki

B
kiB

ki Δ
−

≈ −1,,
,
&    (37)3 

 
, where tΔ  is the sampling time.  Dr. Hashida 
recommends smoothing this approximation 
through Equation 38. 
 
    B

ki
B
ki

B
ki BsBsB 1,,, )1( −+−= &&&   (38)9 

 
, where B  is a smoothed measurement and s 
is a smoothing gain optimized for noise 
bounded as 10 ≤≤ s .  For FalconSat-3, the 
i-axis corresponds to the pitch body axis. 

Spin Rate Controller (Y-Thomson) 
A spin rate controller uses the k-magnetorquer 
to control the spin rate of the i-axis as shown 

in Equation 39.  The relationship between i, j, 
and k are displayed in Table 3. 
 
            )sgn()( B

ji
cmd
ipk BKM ωω −−=  (39)3 

 
TABLE 3: SPIN RATE CONTROLLER AXES 

IDENTIFICATION3 

 x-spin y-spin z-spin 
i 1 2 3 
j 2 3 1 
k 3 1 2 

 
This controller has to be used in conjunction 
with the B-dot controller because the third axis 
is disturbed.  For FalconSat-3, a Y-Thomson 
spin is realized by firing the roll axis 
magnetorquer to control the pitch axis, which 
inherently disturbs the yaw axis.  Then the B-
dot controller activates the pitch axis 
magnetorquer to dampen the remaining rates 
on the roll and yaw axes.   

Cross Product Law 
The cross product law starts off just like the 
PD controller, by determining the following 
error vector: 
 
    edep KKe ωα

rrr
−−=             (40)3 

 
, where all the variables are defined as in the 
PD controller.  Instead of taking this error 
vector directly to the actuators, the cross 
product law then tries to determine the most 
favorable magnetorquing vector through 
Equation 41. 
 

         
2|| B

B

B
Bem r

rr
r ×
=                    (41)3 

 
Finally, the torque vector is determined as: 
 
        LOLOBLO

M BCmBmN
rrrrr

/×=×=  (42)3 

MPACS (Pulse Width Modulation) 
Unlike the other controllers, MPACS is 
designed for the PPTs and not the 
magnetorquers.  The main control’s difference 
between the two actuators is that a single 
magnetorquer can be commanded to alter both 
the direction and magnitude of its magnetic 
dipole, which becomes a torque after being 
crossed with the current magnetic field.  Two 
PPTs put along the same axis but in different 
directions can simulate the direction change 
but the thrust generated is unalterable. 
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Because of this limitation, MPACS is limited 
to controlling FalconSat-3’s yaw within a 
certain range of the commanded orientation 
and no better.  The acceptable distance from 
zero within which MPACS commands no 
torque from the PPTs is called the deadband. 
 
The actual algorithm is very simple.  If the 
current yaw angle is outside the deadband, the 
PPTs are turned on.  The sign of firing is 
always opposite the direction of error. 

RESULTS AND DISCUSSION 
Table 4 gives an overview of how far research 
progressed in each area as of the time this 
paper was written. 
 
TABLE 4: OVERVIEW OF RESEARCH PROGRESS 

Control Algorithm Status 
PD Tested 
PID Tested 
Separate Pitch from Roll/Yaw Designed 
LQR Theoretical 
B-dot Controller Operational 
Spin Rate Operational 
Y-Thomson Operational 
Cross Product Law Operational 
MPACS Operational 
 
The status column is a fairly objective 
judgment of the current position in that 
particular area.  The chain of progression is as 
follows: concept, theory, design, implemented, 
operational, and tested.  In concept, a 
controller is discovered.  Next, the algorithms 
and concept of the controller are delved into.  
By design, the controller is understood enough 
to take the algorithms and theory to make a 
controller that is FalconSat-3 specific.  An 
implemented controller is one that has been 
modeled in Simulink but is untested.  
Operational means a controller works in the 
simulation.  Tested is the final stage, where a 
working controller has undergone a rigorous 
test battery and its affects on and performance 
within the model is well understood and 
documented. 

Proportional-Derivative (PD) 
The PD controller went through the most 
extensive test battery during research.  While a 
complete list of the cases performed and their 
conditions are located in Appendix B, Table 5 
shows an abbreviated list of the results. 
 
 
 
 
 
 

TABLE 5: PD PERFORMANCE OVERVIEW 

Kp Kd 

ang 
conv? / 

to 
cmd? 

tsmax 
(s) 

rates 
conv? 

/ to 
cmd? 

tsmax 

(sec) 
NMTmax 
(N-m) 

3.5 13 Y/Y 11.3 Y/Y 25.3 1.14 
1 1 Y/Y 522 Y/Y 999 0.505 
0 1 Y/N 5,146 Y/Y 201 0.0353 
1 0 N/N ∞ N/N ∞ ∞ 

0.5 0.5 Y/Y 1,031 Y/Y 1,814 0.317 
0 0.5 Y/N 6,110 Y/Y 405 0.0178 

0.5 0 N/N ∞ N/N ∞ ∞ 
0.25 0.25 Y/Y 2,390 Y/Y 3,600 0.212 

0 0.25 Y/N 4,310 Y/Y 815 0.00936 
 
, where “ang” is body angles, “conv” is 
converge, “cmd” is commanded, “tsmax” is 
maximum settling time, “NMTmax” is maximum 
torque demanded from the magnetorquers, “Y” 
is yes and “N” is no. 
 
The above cases were all run with initial 
angles equal to twenty degrees and body rates 
of two degrees per second.  The table 
illustrates each test’s proportional and 
derivative gains, whether the angles and rates 
converge, whether that convergence is to the 
commanded angles and rates, the maximum 
settling time, and maximum required torque.  
The settling time is defined as the first time the 
slowest settling axis’ orientation stays within 
five degrees of the commanded orientation, or 
the first time the slowest settling axis’ stays 
within 0.1 degrees per second of the 
commanded rate.  The table shows how the 
performance of the controller is a function of 
the gains.  Figures 5 and 6 illustrate the angles 
and rates, respectively, versus time for the first 
case in Table 5. 

 

Figure 5: High Gain PD Angular Position vs. Time 
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Figure 6: High Gain PD Angular Velocity vs. Time 

While these gains produce quick settling times 
for the system, they demand far too much 
torque from the magnetorquers, greater than 
five orders of magnitude more than the 
estimated amount of torque available.  
Reducing the gains, increases the settling times 
but lowers the demanded torque.   
 
Another trend noticed is that solely controlling 
the angles, having only a proportional 
controller, merely bounds the angular rates, as 
seen in Figure 7. 

 
Figure 7: P Controller Angular Velocity vs. Time 

More useful, having only a derivative gain, 
requires less torque for a given gain value than 
having both gains set.  Taking this one step 
further, a PD controller can be simulated that 
starts off as just a derivative controller then 
switches to a PD controller after the rates have 
been reduced so far.  If the right balance is 
reached, this reduces the necessary torque and 
increases the performance as seen in Figures 8 
and 9. 

 
Figure 8: D/PD Controller Ang. Position vs. Time 

 

Figure 9: D/PD Controller Ang. Velocity vs. Time 

Table 6 compares the performance of this 
D/PD controller versus any combination of its 
gains.   

TABLE 6: D/PD PERFORMANCE SUMMARY 

Kp Kd 

ang 
conv? 

/ to 
cmd? 

max 
ts (s) 

rates 
conv? 

/ to 
cmd? 

tsmax 
(sec) 

NMTmax 
(N-m) 

0/1E-
5 

5E-
4/1E-

3 
Y/Y 4.0E4 Y/Y 2.2E4 2.9E-5 

0 5E-4 N/N ∞ Y/Y 1.5E4 2.4E-5 
1E-5 1E-3 Y/Y 3.4E4 Y/Y 1.6E4 7.4E-5 

Proportional-Integral-Derivative (PID) 
The PID controller underwent a fairly 
extensive test battery during research.  While a 
complete list of the cases performed and their 
conditions are located in Appendix C, Table 7 
shows an abbreviated list of the results. 

TABLE 7: PID PERFORMANCE SUMMARY 

Kp Ki Kd 
ang 

conv? 
rates 
conv? 

tsmax 
(s) 

NMTmax 
(N-m) 

3.5 2.5E-4 13 Yes Yes 25.4 1.14 
0.035 2.5E-4 0.13 Yes Yes 234.4 0.012 
0.035 2.5E-4 0.013 No No ∞ ∞ 
0.035 2.5E-4 1.3 Yes Yes 134.0 0.051 
0.35 2.5E-4 0.13 Yes Yes 200.0 0.075 

0.0035 2.5E-7 0.013 Yes Yes 1902 2.52E-3 
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Just as with PD, all the above cases had initial 
angles of twenty degrees and rates of two 
degrees per second.  Figures 10 and 11 
demonstrate the angles and rates versus time 
for the first case, which look almost identical 
to the similar PD case because the integral gain 
is so small. 
 

 

Figure 10: High Gain PID Angular Position vs. Time 

 
Figure 11: High Gain PID Angular Velocity vs. Time 

 
As with PD, smaller gains demand less torque 
but have longer settling times.  Among the 
trends noticed in the data collected, the integral 
derivative seemed to destabilize the system.  
Only by making it almost insignificant in 
comparison to the others, about 1000 times 
less, did the PID work as a controller and by 
that point it acted almost exactly like a PD 
controller.   

Separate Pitch from Roll/Yaw 
As previously mentioned, the separating pitch 
from roll/yaw method merely redefines the 
plant equation into the Laplace domain.  
Plugging FalconSat-3’s inertias and orbital 
velocity into Wie’s equations is a simple task.  
This was the extent reached for this method 
during research but the next steps are evident 
from past experience.  After determining the 

characteristic equation, there are a plethora of 
controller design tools, such as root locus 
plots, to help construct a controller that is 
initially more optimized than one obtained by 
guessing gains.  This is a great method to start 
from as an undergraduate student where so 
many simple optimization tools are available.  
For example, this method can take advantage 
of second order approximations that graph 
performance specifications in the Laplace 
domain to also augment design.   
 
However, this is just a starting point.  The s-
plane characteristic equations make several 
assumptions, including circular orbit, 
truncating higher order terms, and replacing 
trigonometric functions with their small angle 
approximations.  While not necessarily bad or 
good, their affect on the accuracy of the plant 
equations needs to be tested, which makes this 
seemingly simple method less attractive.  Also, 
once the requirements are put into ADCS 
terms, such as settling time, rising time, and so 
forth, they are easy to graph on the s-plane.  
However, taking real world requirements and 
putting them in ADCS terms is difficult.  For 
example, FalconSat-3’s requirements are listed 
at the beginning of this paper and there are no 
clear relationships between these and the basic 
controller performance characteristics. 

Linear Quadratic Regulator Theory 
LQR was never taken past a theoretical stage, 
so the discussion is based on the consulted 
sources without validation from the simulation.   
 
To this theory’s credit, a properly derived K, 
where Q and R are suitably chosen, guarantees 
closed loop stability3.  Some other advantages 
of LQR is that it can be used for three axes 
control, is easy to apply to multiple-input-
multiple-output systems, and can be modified 
to work for full-state feedback and state 
estimation. 
 
On the other hand, LQR is far too complex to 
be intuitive to the beginning user.  If the 
designed controller failed to work properly, 
knowing even the general location of the error 
would not be possible.  Also, this theory 
creates a computationally intensive controller.  
For example, a six-state system, three angles 
and three rates, requires the inversion of a 6x6 
matrix and multiplication by 12x12 matrices 
that might be complex numbers.  As such, 
LQR controllers are not usable by 186 or even 
386 satellite on board computers3. 
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B-dot 
This controller never made it into extensive 
testing so the effects of altering the controller 
gain and smoothing constant on varying initial 
conditions are still unknown.  Figure 12 shows 
the results of the simulation using only the B-
dot controller with a controller gain of 2*106, a 
smoothing gain of 0.5, sampling time of five 
seconds, initial angles of zero degrees, and 
initial rates of two degrees per second.  A 
picture of the orientation versus time is 
unnecessary as this controller only tries to 
realign the rates.   
 

 

Figure 12: Angular Velocity vs. Time for B-dot 
Controller 

 
Figure 13: Torque vs. Time for B-dot Controller 

 
First inspection shows a controller that 
performs as expected but very slowly.  By only 
using the pitch axis magnetorquer, the B-dot 
controller brings the roll and yaw axes rates to 
zero while steadying the pitch axis to some 
constant value.  While seemingly slower than 
PD or PID, a look at the torque versus time 
graph, Figure 13, reveals a very efficient 
controller.  Note that since the torque is a 
function of the magnetorquer’s dipole crossed 
with the magnetic field, the created torque is 

purely on the roll and yaw axes when the pitch 
magnetorquer is the only one firing. 
 
While it has a maximum setline time of around 
36,100 seconds, Figure 13 shows that the B-
dot controller commanded a maximum torque 
below 4*10-5 N-m, much lower than 
interpolated data from the PD and/or PID test 
battery results indicates. 

Spin Rate / Y-Thomson 
Like the B-dot, this controller never underwent 
extensive testing so the effects of changing the 
controller gain are still unknown.  Figure 14 
shows the results of the simulation using only 
a y-spin rate controller with a controller gain 
of 50, initial angles of zero degrees, and initial 
rates of two degrees per second.  Once again, 
the angular position graph is not represented as 
the spin rate controller only attempts to bring 
the rates back to the commanded values. 
 

 
Figure 14: Angular Velocity vs. Time for Y-Spin Rate 

Controller 

 
Figure 15: Torque vs. Time for Y-Spin Rate Controller 
 
As expected, using the roll axis magnetorquer 
a y-spin rate controller starts constructively 
affecting all three axes.  However, at some 
point it starts to disrupt the yaw axis, which is 
where the B-dot controller should be switched 
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on.  Figure 15 shows the controller’s torque 
profile versus time, maxing out around 7*10-5 
N-m.  As predicted, the torque only acts on the 
pitch and yaw axes. 
 
To create system stability, the y-spin controller 
must be used in conjunction with the B-dot 
controller.  Incorporating both the B-dot and y-
spin rate controllers requires several 
conditional statements.  When the task is 
completed the resulting controller is a X-, Y-, 
or Z- Thomson, depending on the desired spin 
axis.  For Falconsat-3, a Y-Thomson is 
required.  Utilizing the same gains as in the 
previous individual implementations, Figure 
16 shows the simulated rates over time 

 
Figure 16: Angular Velocity vs. Time for Y-Thomson 

Controller 

Cross Product Law 
At the time of this paper, the Cross Product 
Law Controller has only recently been made 
operational.  Like the B-dot, this controller 
never underwent extensive testing so the 
effects of changing the controller gains are still 
unknown.  Figures 17 and 18 show the results 
of the simulation using a cross product law 
controller with a proportional gain of one and a 
derivative gain of two.  The initial angles are 
zero degrees and the initial rates are two 
degrees per second.  The angular position is 
shown for this controller as it should stabilize 
these back to zero. 
 

 
Figure 17: Angular Position vs. Time for Cross Product 

Law Controller 

 
Figure 18: Angular Velocity vs. Time for Cross 

Product Law Controller 

Micro Propulsion Attitude Control System  
Simulations of this system focused on the yaw 
axis as this would be the easiest axis for the 
PPTs to affect.  The implemented system has 
only undergone operational and not 
performance testing.  For the first simulation, 
the initial orientation was ten degrees off 
commanded with PPT thrust levels at 4*10-4 
N-m, a deadband of two and one-half degrees, 
a thrust period of one second, and a duty cycle 
of 25% or 0.25 seconds.  While the thrust level 
is orders of magnitude above the expectable 
thrust from the PPTs on FalconSat-3, the 
condition was merely chosen to test for 
operability.  Figure 19 illustrates the thrust 
level, thrust period, and duty cycle for easier 
understanding of terms.   
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Figure 19: Thrust vs. Time (s) for MPACS/PPTs 

Note the thrust level is shown as the outlined magnitude but opposite 

direction. 

 
To check a hard-limit cycle, the simulation 
was run with no other torques and the results 
are illustrated by Figure 20.  To check a soft-
limit cycle, a simulation was run with a 
constant disturbance torque of 4*10-5 N-m, 
with the results shown in Figure 21. 
 

 
Figure 20: Hard-Limit Cycle for MPACS/PPTs 

 

 
Figure 21: Soft-Limit Cycle for MPACS/PPTs 

In both figures, the switch logic represents the 
PPT firing direction commanded by MPACS, 
where 10 equals “positive on”, -10 equals 
“negative on”, and 0 is “off”.  In both, the 
deadband is 2.5 degrees off both sides of zero 
and MPACS is seen to at best act as a 

proportional controller.  For the hard-limit 
cycle, the PPTs are used less efficiently as they 
have to fire equally on both sides of the 
deadband.  The soft-limit is more efficient as 
the disturbance torque prevents the yaw axis 
from going very far past the negative side of 
the deadband. 

CONCLUSIONS 
Because different pieces of the research 
finished at different stages of completion, 
quantitative comparison is difficult.  However, 
qualitatively, there are a number of worthwhile 
conclusions seen. 
 
Overall, PD control was very simple.  Having 
only two gains that directly created the torque 
vector, it was easy to understand the effect of 
each gain.  It was then easier to alter the gains 
to obtain the desired performance.  However, 
the gains were merely chosen to obtain the 
desired results through educated guessing.  No 
method was discovered to generate gain values 
that maximized performance for a given torque 
limit.  
 
The PID controller is only slightly more 
complicated than the PD controller.  Its third 
gain makes it less intuitive than the PD 
controller, but the effect of the gains is rather 
evident after a few tests.  However, for the 
slight addition in complexity, the tests ran did 
not show any increase in performance over the 
PD and, once again, no method was discovered 
to maximize the gains for performance and 
torque limits. 
 
Separating pitch from roll/yaw is a great 
method to start from as this method is taught at 
the undergraduate level.  It can take advantage 
of second order approximations that graph 
performance specifications in the Laplace 
domain and other tools to augment design.  
However, this really is just a starting point.  
The s-plane characteristic equations make 
several assumptions, whose effects need to be 
quantitatively tested.  Also, while requirements 
in ADCS terms are easy to graph in the s-
plane, no simple relationships between real 
world requirements and those in ADCS terms 
were found.   
 
As previously mentioned, LQR’s main 
advantages is that it guarantees closed loop 
stability when properly designed and can be 
easily modified for MIMO.  Nevertheless, it is 
far too complex to be intuitive to the beginning 
user and is far too computationally intensive 
for FalconSat-3. 
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It is easy to see why a B-dot controller is a 
great start to commissioning a satellite from 
tip-off.  It requires no attitude or attitude rate 
knowledge, only magnetometer measurements.  
Despite its low demands, the B-dot controller 
seems to be able to obtain excellent 
performance.  However, this conclusion was 
made on the few test cases ran. 
 
A spin rate controller is simple and able to 
constructively influence all three axes for a 
time and two for all time.  Unfortunately, 
gaining control of the roll and pitch, in 
FalconSat-3’s case, disturbs the yaw axis.  
This prohibits the spin rate controller from 
being used on its own.  To create system 
stability, it had to be used in conjunction with 
the B-dot controller. 
 
According to consulted sources, a cross 
product law controller is the only one that 
constructively incorporates a gravity gradient 
with magnetorquers for three-axes 
stabilization.  It is more complicated than the 
B-dot or spin rate controllers, as it requires 
output from the attitude estimator as well as 
sensor data, but is able to align the orbital and 
body coordinate frames, which is necessary for 
the payloads during the satellite’s operational 
lifetime.  Further testing will lead to more 
optimized gains and better performance for 
FalconSat-3 
 
Assuming, the PPTs are strong enough to do 
attitude maneuvers, they are limited to being 
used for proportional control.  To obtain 
proper convergence to the commanded, they 
will have to be used in conjunction with 
another controller system and the 
magnetorquers. 
 
In the end, while many of the control 
algorithms could be used to meet FalconSat-
3’s attitude control requirements, proper 
integration of the B-dot, spin rate, and cross 
product law controllers, when properly 
incorporated, should yield the best balance 
between competing performance 
characteristics. 

RECOMMENDATIONS FOR FUTURE 
RESEARCH 
Appendix A contains a picture of the current 
Simulink model and Figure 22 gives a 
simplified overview of the simulation’s pieces.   
 

 
Figure 22: Simulation Overview 

The colored blocks represent pieces of the 
simulation that are the most improperly 
implemented.  Once fixed, proper analysis 
should be carried out so the different 
controllers’ performances can be more 
quantitatively compared. 
 
Ultimately, the best controller(s) should be 
implemented and the life of the satellite, from 
tip-off to decommissioning, properly 
simulated, so the best gains can be found 
through further testing. 
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APPENDICES 

Appendix A: Simulation Picture 
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Appendix B: PD Test Battery 
   Initial   Init’l   Comm. Comm. Rates   

No. time samp Angles (˚)  Rates | LO (˚/s) Angles (˚) (˚/s) | LO Nc  

 (sec) (sec) Roll Pitch Yaw P Q R [R P Y] [P Q R] Kp Kd 

0 10000 10 0 0 0 0 0 0 [0 0 0] [0 0 0] 0 0 

1 1000 10 20 20 20 2 2 2 [0 0 0] [0 0 0] 0 0 

2 10000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] -1 1 

3 10000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] 0 1 

4 500 0.5 20 20 20 2 2 2 [0 0 0] [0 0 0] -1 0 

5 10000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] -0.5 0.5 

6 10000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] 0 0.5 

7 100 1 20 20 20 2 2 2 [0 0 0] [0 0 0] -0.5 0 

8 10000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] -0.25 0.25 

9 10000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] 0 0.25 

10  10 20 20 20 2 2 2 [0 0 0] [0 0 0] -0.025 0 

11 10000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] -0.1 0.1 

12 10000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] 0 0.1 

13  10 20 20 20 2 2 2 [0 0 0] [0 0 0] -0.1 0 

14 20000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] -0.05 0.05 

15 20000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] 0 0.05 

16  10 20 20 20 2 2 2 [0 0 0] [0 0 0] -0.05 0 

17 40000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] -0.025 0.025 

18 40000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] 0 0.025 

19  10 20 20 20 2 2 2 [0 0 0] [0 0 0] -0.025 0 

20 100000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] -0.01 0.01 

21 100000 1 20 20 20 2 2 2 [0 0 0] [0 0 0] 0 0.01 

22  10 20 20 20 2 2 2 [0 0 0] [0 0 0] -0.01 0 

23 5.00E+5 1 20 20 20 2 2 2 [0 0 0] [0 0 0] ☻ ☻ 

24 5.00E+5 1 20 20 20 2 2 2 [0 0 0] [0 0 0] ♣ ♣ 

25 5.00E+5 10 20 20 20 2 2 2 [0 0 0] [0 0 0] ♥ ♥ 

26 5.00E+5 20 20 20 20 2 2 2 [0 0 0] [0 0 0] ♦ ♦ 

27 3.00E+6 40 20 20 20 2 2 2 [0 0 0] [0 0 0] ♠ ♠ 

28 1.50E+6 50 60 60 60 0 0 0 [0 0 0] [0 0 0] ♠ ♠ 

29 1.50E+6 50 -60 -60 -60 0 0 0 [0 0 0] [0 0 0] ♠ ♠ 

30 1.50E+6 50 75 60 45 0 0 0 [0 0 0] [0 0 0] ♠ ♠ 

31 1.50E+6 50 60 45 75 0 0 0 [0 0 0] [0 0 0] ♠ ♠ 

32 1.50E+6 50 45 75 60 0 0 0 [0 0 0] [0 0 0] ♠ ♠ 

33 3.00E+6 10 0 0 0 6 6 6 [0 0 0] [0 0 0] ♠ ♠ 

34 3.00E+6 20 0 0 0 -6 -6 -6 [0 0 0] [0 0 0] ♠ ♠ 

             

     Notes:        

      qk   wk    

     ☻ time = 0 error < .001  t = 0 error < .005   

     ♣ 0 1.00E-04  5.00E-02 5.00E-03   

not performed    ♥ 0 1.00E-03  5.00E-03 5.00E-04   

<1E-7 ≈ 0    ♦ 0 1.00E-03  5.00E-03 2.00E-03   

     ♠ 0 1.00E-04  5.00E-03 5.00E-04   
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Appendix C: PID Test Battery 
 Initial   Initial   Comm. Comm. Rates    

No. Angles (˚)  Rates | LO (˚/s) Angles (˚) (˚/s) | LO Nc   

 Roll Pitch Yaw P Q R [R P Y] [P Q R] Kp Ki Kd 

0 0 0 0 0 0 0 [0 0 0] [0 0 0] 0 0 0 

1 20 20 20 2 2 2 [0 0 0] [0 0 0] 0 0 0 

2 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E+00 2.50E-04 1.30E+01 

3 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-02 2.50E-04 1.30E-01 

4 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-02 2.50E-05 1.30E-01 

5 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-02 2.50E-03 1.30E-01 

6 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-02 2.50E-04 1.30E-02 

7 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-02 2.50E-04 1.30E+00 

8 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-03 2.50E-04 1.30E-01 

9 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-01 2.50E-04 1.30E-01 

10 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-03 2.50E-07 1.30E-02 

11 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-03 2.50E-05 1.30E-02 

12 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-04 2.50E-07 1.30E-02 

13 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-03 2.50E-08 1.30E-02 

14 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-03 2.50E-07 1.30E-03 

15 20 20 20 2 2 2 [0 0 0] [0 0 0] 3.50E-05 2.50E-09 1.30E-04 

16 60 60 60 0 0 0 [0 0 0] [0 0 0] 3.50E-05 2.50E-09 1.30E-04 

17 -60 -60 -60 0 0 0 [0 0 0] [0 0 0] 3.50E-05 2.50E-09 1.30E-04 

18 75 60 45 0 0 0 [0 0 0] [0 0 0] 3.50E-05 2.50E-09 1.30E-04 

19 60 45 75 0 0 0 [0 0 0] [0 0 0] 3.50E-05 2.50E-09 1.30E-04 

20 45 75 60 0 0 0 [0 0 0] [0 0 0] 3.50E-05 2.50E-09 1.30E-04 

21 0 0 0 6 6 6 [0 0 0] [0 0 0] 3.50E-05 2.50E-09 1.30E-04 

22 0 0 0 -6 -6 -6 [0 0 0] [0 0 0] 3.50E-05 2.50E-09 1.30E-04 

            

           <1E-7 ≈ 0 
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