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Introduction
The subject of astronautics is a thorough combination of physics, chemistry, engineering, and applied mathematics.  It is difficult for a short chapter to do justice to the subject and may easily give the reader a false sense of security...  The clearest presentation of an introduction to astronautics is given in the text book, Understanding Space: An Introduction to Astronautics, Revised 3rd Edition by Jerry J. Sellers.  This book is used as a text for a one semester introductory course to astronautics that is taught to every Air Force Academy cadet.  The text is the result of the Department of Astronautics’ 47 year effort to present an introduction to astronautics in the most understandable format to over 40,000 students new to the subject.  Understanding Space has many illustrations, summaries of important material and worked out problems to aid the reader.  The authors highly recommend that anyone interested in interacting in the space community read this text.  A summary of the key equations used in Understanding Space is included at the end of this appendix to aid the reader in their calculations while reading Understanding Space.  
The reader must be cautioned to make sure they are properly using the laws of physics and chemistry while planning a mission.  The primary errors occur when these laws of physics and chemistry are incorrectly applied.  We are used to actually using many approximations of the laws of physics on earth.  A good example is Newton’s Second Law.  On earth it is usually applied as F=ma, but Newton originally stated it as the force equals the change in linear momentum, which means that the change in mass as well as the change in velocity must be considered.

F = dp/dt = d(mv)/dt = (dm/dt) v + m (dv/dt) = (dm/dt) v + ma
(1)

Therefore, during activities where there is a significant change in mass, such as during launch or any subsequent on-orbit thruster burn; Newton’s Second Law must be used in its original form.    
Another astrodynamic concept often not understood by mission planners is the fact that the only place a single satellite can provide stationary coverage of a given point on the earth is in geostationary orbit over a point on the equator.  The satellite altitude must correspond to an orbital period equal to the rotation rate of the earth and that turns out to be 35,780 km.  As a result this region around the equator is becoming “crowded” with satellite TV and communications satellites.  Satellites in all orbits at other altitudes and inclinations are constantly moving in relation to the earth.  This is because the satellite is going around the earth in an orbital plane that is stationary relative to the center of the earth while the earth is rotating around that center point.  Therefore if a mission planner desires continual surveillance of a specific spot or region on earth, a constellation of satellites is required. The number of satellites required to provide coverage of a region on earth is a function of: the satellite orbital parameters (altitude, inclination, orbit shape and location); the percent of time coverage is required (i.e., continuous  viewing or re-visit at some periodic rate); and, the types of sensors used to observe the region.
Another example of the non-intuitive nature of space activities is in an understanding of the last shuttle disaster.  It takes a large quantity of propellant to change the inclination of an orbit.  Some commentators have stated that the reason the shuttle could not have gone to the space station if they had known they were in trouble, is that they did not have the proper docking system.  No matter how the shuttle would have been configured, it did not have anywhere near the quantity of fuel required to change the inclination of their orbit to match the inclination of the space station’s orbit.

The remainder of this appendix is a summary of some of the most important aspects of astronautics taken from the introductory course to astronautics taught by the Department of Astronautics of the United States Air Force Academy.
Space Environment
The space environment is very hostile, not only to humans, but to spacecraft as well.  

Human hazards:

Free-Fall (weightlessness) causes physiological problems, such as dehydration, vomiting, decalcification of bones, low production of red blood cells, and muscle atrophy.   Radiation and Charged Particles cause cancer and death if dosage is high enough for radiation sickness (no cure).

Psychological effects include stress of excessive workload, isolation, loneliness and depression.

Spacecraft hazards:

A constant state of free-fall means systems designed to work with one g of gravity won’t work (toilet, chair, shower, power drill).

The sensible atmosphere reaches up to approximately 100 km above the surface of the earth. The ionosphere starts at the top of the sensible atmosphere and extends into space with a steadily decreasing density. However the density of the ionosphere  is large enough to have a drag effect up to about an altitude of 1,000 km and that  affects the satellite’s orbit.  The lower the orbit, the more the effect.  Also single oxygen atoms in the lower reaches of the ionosphere are very corrosive to spacecraft.

The vacuum of space causes outgassing that can cloud sensors and change material properties.  To avoid vacuum or cold welding, special lubricants must be used.  Heat energy can only be transferred by radiation.

Over 50,000 objects of micrometeroids and space junk in low earth orbit are a collision hazard.

Electromagnetic radiation, primarily from the sun, heats up spacecraft surfaces, can damage electronic components, disrupt communications, and change a spacecraft’s orientation.

Charged particles cause static discharge damaging electronic components and sensors, sputtering that damages thermal coatings and sensors, and single-event phenomenon (SEP) that disrupt computer reliability.

Orbit Fundamentals

This section will see how the application of Newton’s Laws and Conservation Laws to astronautics leads to Kepler’s Laws:
Kepler’s First Law: Orbits of the planets (satellites) are ellipses with the sun (earth) at the focus.

Kepler’s Second Law: The radius vector from the sun (planet) to a planet (satellite) sweeps out equal areas in equal time.

Kepler’s Third Law: The square of the orbital period is proportional to the cube of the orbiting body’s mean distance from the central body.  (P2 
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It is first necessary to establish an inertial coordinate system for orbits before proceeding with the mathematical description of satellite motion.  The coordinate system used for orbits around the earth is the geocentric-equatorial coordinate system illustrated in Figure A-11.  Note that the principal direction,
[image: image2.wmf](

)

 

I

ˆ

 

, was historically defined to be the direction of a vector from the center of the earth through the sun to the First Point of Aries at the time of the vernal equinox. Because the motions of the equatorial plane, ecliptic plane, and axis of rotation it is necessary to define a true inertial frame in terms of its position at a particular epoch. The J2000 System describes the direction of the principal direction,
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, in the year 2000 and that definition of the Geocentric-equatorial inertial coordinate system and the foundation of all near-Earth modeling and simulation.  This means that the coordinate system is fixed in inertial space with the earth rotating continually at its origin “underneath” the coordinate system.

[image: image4.emf]
Figure A- 1: The Geocentric-Equatorial Coordinate System

Using this coordinate system and making the assumption that the dominate force involved is the gravitational attraction between the orbiting satellite and the earth, applying Newton’s Laws yields the equation:
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(A-1)
Where R is the vector distance from the center of the earth to the satellite (the sum of the altitude of the satellite and the radius of the earth).  The scalar solution to this equation is:
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(A-2)
This equation mathematically describes conical sections.  Conical sections can be a circle, an ellipse, a parabola, or a hyperbola as illustrated in Figure A-2.
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Figure A- 2: Conic Sections

The orbit of a satellite orbiting the earth is either a circle or an ellipse. Parabolic and hyperbolic trajectories have too much energy for a closed orbit and represent “escape” paths with respect to the central body.  The geometry of an ellipse is illustrated in Figure A-3.

[image: image9.emf]
Figure A- 3: Geometry of an Elliptical Orbit

The motion of a body moving freely in space is also governed by the laws of Conservation of Energy and Conservation of Angular Momentum.  These two fundamental laws can be used to determine the detailed behavior of unperturbed orbits and the behavior involving energy and momentum changes.  The Conservation of Energy Law states that the total energy of a system is constant and the total energy is the sum of the kinetic energy and the potential energy.  This means that any increase in potential energy must be matched with an equal decrease in kinetic energy and vice versa.

Total Energy = Potential Energy + Kinetic Energy

Because the mass of the satellite is common to every term, we can reduce this to the form of 
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Where ( = specific mechanical energy ( 
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This means this equation applies to a satellite of any mass, regardless of size.  In this equation:


V = the velocity of the satellite


R = the distance of the satellite from the center of the earth
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, which is Newton’s gravitational constant, G, times the mass, M, of the object the satellite is orbiting (In this case the satellites around the earth).  It should be pointed out that this equation also applies to the earth orbiting the sun where now M is the mass of the sun.  Therefore the value of 
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in this equation changes depending on the mass of the central body.  The orbital period, or time it takes for the satellite to compete one orbit is, a function of the semimajor axis, a, given by the equation:
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The velocity of the satellite at any point in the orbit is given by the equation:
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(A-5)
which simplifies for circular orbits to:
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Since R is directly related to altitude, the period is directly related to the altitude of the satellite.  The conditions for the various altitude regions are given in Table A-1 for Low Earth Orbit (LEO), Mid Earth Orbit (MEO), Geosynchronous Earth Orbit (GEO - an orbit with a period of 24 hours), and High Earth Orbit (HEO).  
	Orbit
	Period
	Altitude (km) 

	LEO
	90 min – 6 hr
	300 – 9,000

	MEO
	6 hr – 12 hr
	9,000 – 18,000

	GEO/HEO
	> 12 hr
	> 18,000


Table A-1:  Orbit Classifications.
Applying the Conservation of Angular Momentum Law in a similar fashion we arrive at the specific angular momentum vector, h, equation that also applies to orbiting objects (satellites) of any mass size. 
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Since the Conservation of Angular Momentum Law states that the angular momentum vector, h, is a constant, it means this vector is fixed in space.  Since a vector mathematically defines a plane perpendicular to the vector, this means that the plane of motion of the satellite is defined by the plane of the satellite position vector, R, and the velocity vector of the satellite, V.  This leads to the fact that the plane of the orbit of the satellite is fixed in space and the earth rotates under it.  A consequence of this fact is that the only condition for the satellite to be stationary over a point on earth is if the satellite is at the equator with a velocity equal to the rotation of the earth.  Since the velocity of the satellite varies with altitude, the matching velocity occurs at an altitude of 35,780 km.  This is where satellite TV and many communications satellites are located. 
It should be emphasized that the equations presented above are approximations that have numerous assumptions.  Accurate solutions are arrived at using complex computer programs that take into account the neglected perturbations to the above solutions.  Some of the assumptions that have been made are:

1. There are only 2 bodies in this universe (central body and orbiting body).

(A side note is that if you calculate the gravitational attraction of the earth is 1300 times the gravitational attraction of the sun for satellite in low earth orbit (LEO).
2. The bodies are Spherically Symmetric (can be treated as point masses).




F​Gravity acts through the center of the bodies.

3. The mass of the central body (M) >> mass of orbiting body (m). 
4. Otherwise the spacecraft could be pulling on the central body enough to move it.

5. Gravity is the only force acting (Fg >> other Forces).

— Drag—high enough above the earth  to ignore

— Thrust—once on-orbit, we assume that we’re not thrusting

— Neglect all other Forces -- solar pressure, electromagnetic forces
6. The Geocentric-Equatorial Coordinate system is a reference sufficiently inertial (Newton's laws apply).

Classic Orbital Elements (COEs)
Knowledge of a satellite’s position vector, R, and velocity vector, V, defines the satellite position at that instant. That satellite position and velocity measurements are then used to define the characteristics of the satellite’s motion at that instant in terms of the classic orbital elements (COEs). Determinations of the COEs of a satellite orbit are used to predict the position of a satellite at any point in time.  The names of the COEs and their relationship to the orbit are:

a – Semi-major axis – SIZE (The larger the size the greater the total energy)
e – Eccentricity - SHAPE

i -Inclination – TILT

( – Right Ascension of the Ascending Node (RAAN) - SWIVEL
( – Argument of Perigee – ROTATE
( – True Anomaly - LOCATION
The semi-major axis, a, is illustrated in Figure A-3.  It is one-half the distance between perigee (closest point of the orbit to earth) and apogee (the furtherest point of the orbit from earth) in an elliptical orbit.  It is a measure of the size of the orbit and the size of the orbit is directly related to the total energy of the satellite.  The eccentricity, e, is a measure of shape of the orbit.  A circular orbit has an eccentricity of zero.  How the various values of eccentricity relate to the shape of the orbit is illustrated in Figure A-4.  


[image: image18.emf]
Figure A- 4: The Relationship Between Eccentricity and Orbit Shape

The inclination, i, is the angle between the plane of the orbit and the equatorial plane.    
The Right Ascension of the Ascending Node (RAAN), ( , is a measure of the angle to the point at which the satellite crosses the equator from the southern to northern hemisphere measured from the principal direction, 
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.  RAAN is another way of saying how far the orbit is swiveled from the principal direction.  The argument of perigee, (, is a measure of the angle the perigee of the orbit is rotated from the RAAN.  Figure A-5 illustrates the relationship of inclination, right ascension of the ascending node, and the argument of perigee.  

[image: image20.emf]
Figure A-5: Definition of Classical Orbital Elements
The true anomaly, (, is a measure of the angle of the location of the satellite in the orbit relative to perigee.  True anomaly is illustrated in Figure A-6.
[image: image21.emf]
Figure A-6: True Anomaly





Satellite Ground Tracks
The ground track (path of the satellite passing over the earth) is of primary interest to mission planners.  The actual shape of the ground track is determined by the COEs of the orbit.  Sample ground tracks are illustrated in Figures A-7 through A-9.  The coverage of the rotating earth for each orbit is a function of the orbital period, which is a function of the semi-major axis of the orbit.
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Figure A-7: Ground Tracks for Different Orbital Periods
Note that the distance the ground track advances north and south of the equator is equal to the inclination of the orbit.

[image: image24.emf]Eccentricity Change
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Figure A-8: Ground Tracks for Different Orbit Eccentricities
The amount of the earth covered by a satellite also depends upon the inclination of the orbit.
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Figure A-9: Ground Tracks as a Function of Orbit Inclination


Changing Orbits - Hohmann Transfers
[image: image1.wmf]µ

One of the many functions that must be performed by most space vehicles is the maneuvering from one orbit to another. The orbit changes may involve changes in orbit size, shape, inclination, or position within an orbit. The most fuel efficient transfer from one orbit altitude to another orbit with a different altitude is the Hohmann transfer.  The main assumptions are       s  that both orbits have the same inclination (are coplanar) and that any thruster burns happen instantaneously. These are good assumptions for the high-thrust solid and liquid propellant technologies used for most orbit transfers today.  The Hohmann transfer is illustrated in Figure A-10.  Note that the term V
, refers to the change in velocity of the satellite to perform the maneuver.  Vis a direct measure of the fuel required to perform the maneuver. The following is the procedure to calculate the V required to move the satellite from orbit A to orbit B.  To simplify the illustration the orbits A and B in this example are circular.  The same procedure would be used for elliptical orbits.  The only difference is in the formula to find the initial velocity in orbit A and the final velocity in orbit B. 
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Figure A- 10: Hohmann Transfer For Circular Orbits
COMPUTATION OF HOHMANN TRANSFER VELOCITY CHANGES
The Big Picture
Identify the initial orbit (A in this case) and 
the final orbit (B) and draw an elliptical orbit 
connecting the two along a line of apsides.

1) Determine initial velocity
Satellites in circular orbits have constant velocity.  Using the simplified equation for velocity in a circular orbit, find the satellite’s initial speed:
  VA = 
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2) Determine velocity needed to arch out to the final orbit
In order to traverse the space between the orbits, a satellite must follow an elliptical path connecting the orbits.  The velocity at any given point in an elliptical orbit can be determined using the following equation:  

Vtransfer at A = 
[image: image29.wmf])

(

2

1

t

R

e

m

+

  





(A-9)
where the energy of the transfer orbit remains constant.  Energy can be determined using the following equation:
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(A-10)
and the size of the transfer orbit is simply:
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(A-11)
3) Determine the change in velocity needed to start the transfer
The difference between the initial velocity and the velocity needed to get into the transfer orbit is the velocity needed to start the transfer:
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4) Determine the velocity at the final orbit
Satellites in elliptical orbits will trade kinetic energy close to the gravitational body for potential energy farther from the body.  As the satellite approaches apogee, its velocity will decrease.  Using the more general form of the velocity equation and the energy of the orbit, we can find the satellites velocity at any point in the orbit.  Here we want the velocity of the transfer orbit at B:

  Vtransfer at B = 
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5) Determine velocity needed to stay in the final orbit
Once again, satellites in circular orbits have constant velocity.  Using the simplified equation for velocity in a circular orbit, find the satellite’s needed final speed:
    


  VB = 
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6) Determine the change in velocity needed to complete the transfer
The difference between the velocity in the transfer orbit at the final orbit and the velocity needed to stay in the final orbit is the velocity needed to finish the transfer:
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7) Determine the total change in velocity needed
The total change in velocity is simply:
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(A-16)
For the interplanetary transfer of a satellite from a parking orbit around earth to a parking orbit around some other planet, refer to Chapter 7 in Understanding Space.  The transfer has many similarities but has too many steps and assumptions for this appendix.

Plane Changes

Plane changes are when the satellite is changing from an initial orbit to a final orbit with a different inclination.  [image: image37.png]



Figure A- 11: Simple Plane Change
A simple plane change is where all of the COEs remain the same except the inclination changes.  The plane of the orbit has a different inclination to the equatorial plane.  The V required for a simple plane change is
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where Vinitial is the velocity both before and after the plane change because the velocity of the satellite does not change.  Remember that the only COE that changes is inclination and inclination does not affect the velocity of the satellite.  Theta is the angle between the initial orbital plane and the final orbital plane  The Vs quantity is a measure of the fuel required to perform the maneuver.  



Sometimes there is a need to change both the inclination of the orbit and the size of the orbit. This occurs when there is a Hohmann transfer and the new orbit is at a different inclination. 
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Figure A- 12: V Required for Combined Plane Change

The V required for a combined plane change is
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(A-18)
as illustrated in Figure A-12. The purpose of a combined plane change maneuver is to minimize fuel expenditures when changing both orbit size and orbit inclination. The energy required to make the change in inclination angle scales with the velocity of the satellite. Therefore the minimum energy required to change orbits uses a two-burn maneuver. When transferring from a smaller to larger orbit the first burn takes place at the perigee of the smaller orbit and only changes the size of the semi-major axis. The second (combined) burn takes place at the apogee of the elliptical transfer orbit when the satellite executes the “circularizing” burn to enter the desired orbit and when the satellite velocity is at a minimum. The direction of the second burn is chosen to simultaneously change the inclination of the orbit. This two-burn maneuver requires less energy than two Hohmann transfer burns to change orbit size followed by a simple plane change burn.



Rendezvous
When one orbiting object needs to rendezvous with another orbiting object the timing needs to be precise.  There are two types of rendezvous.  One type is where both orbiting objects are at different positions in the same orbit (co-orbital).  The other type of rendezvous is where the two orbiting objects are in the same plane but in different sized orbits (coplanar).
The co-orbital rendezvous is illustrated in Figures A-13 through A-15.  Figure A-13 is the case where the maneuvering object (shuttle) is behind the satellite and needs to go into a phasing orbit that is smaller than the original orbit in order to arrive at a common point with the satellite.  The equations for co-orbital rendezvous are shown below.
Find the angular velocity of the satellite:
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Find the semi-major axis of the phasing orbit:
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(A-20)

[image: image45.emf]
Figure A-13: Co-Orbital Rendezvous with Shuttle Trailing Satellite

Figure A-14 illustrates the co-orbital case where the maneuvering object (shuttle) is ahead of the satellite and needs to go into a phasing orbit larger than the original orbit to arrive at a common point with the satellite.  


[image: image46.emf]
Figure A- 14: Co-Orbital Rendezvous With Shuttle Ahead of Satellite

The coplanar rendezvous is illustrated in Figure A-15.  This is a timed Hohmann transfer, timed for the shuttle to arrive in the final orbit at a point where the satellite position is the same in the final orbit.  The equations required to solve this rendezvous are:
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(initial is measured from interceptor to target in the direction of satellite motion
If target ahead…
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If target behind…
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WT is the wait time before firing the thruster to time the arrival at the same position as the satellite.

[image: image55.emf]Rendezvous


Figure A- 15: Coplanar Rendezvous

Orbit Predictions

Predicting the forward locations of satellites is another critical calculation that must be performed. The variable eccentric anomaly (E) is defined in figure A-16 and is used to find the position of a satellite in orbit as a function of time and vice versa. Eccentric anomaly is related to true anomaly by the following equation:
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The orbit equations are used to derive the relationship between the orbital parameters:
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The area that is wept out by the position vector,
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Since 
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is the constant areal density given by Kepler’s third law,
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The area of the ellipse is the same as the area of the auxiliary circle swept out by the position vector and multiplied by b/a. That can be then simplified to:
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Figure A-16: Definition of Eccentric Anomaly
The next variables defined are the mean anomaly, M, and the orbital mean motion, n: 
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From this the following expression for Kepler’s time equation for relating position to time in an orbit:
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The solution technique is to use the relationships between true anomaly, eccentric anomaly, mean anomaly, and time-of-flight (TOF) to determine the satellite position.
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Orbit Perturbations
The derivation of orbital equations from Kepler’s laws involved several assumptions that cannot be ignored when high accuracy is required. The first assumption to be addressed is the nature of the drag forces in low earth orbit. Figure A-17 shows the effect of drag on the orbit of a LEO satellite. The effect of drag is most significant during the perigee of a satellite’s orbit when the drag is maximum (highest density at lowest altitude) and the velocity is maximum. The effect of drag is to remove energy from the orbit and reduce the magnitude of the apogee.
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Figure A-17: Effect of Drag on Low Earth Orbit
The second primary cause of orbit perturbations is due to the oblateness of the earth. The earth is not spherically symmetric but has a bulge at the equator. Figure A-18 shows the effect of oblateness on a satellite orbit.
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Figure A- 18: Effect of Oblateness on Satellite Orbit
The gravitational potential of an oblate earth can be described as:
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where  is the geocentric latitude; Re is the mean equatorial radius of the earth; and, J2 and J3 are harmonic constants associated with the gravitational potential model. The number of harmonic constants used in the calculation of orbit perturbations increases the accuracy of the orbit prediction. In the majority of cases using just the J2 is adequate to accurately define position. Figure A-19 shows how the nodal regression rate scales with orbit inclination and eccentricity. Considering only the J2 term the nodal regression rate is approximated as:
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The value of RAAN can then be calculated as:
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Figure A-19: Nodal Regression Rate due to Earth Oblateness
Sun-synchronous orbits are specifically designed to accommodate the effects of the earth’s oblateness on the inertial orientation of the satellite orbit. Various remote sensing missions require that a satellite observe locations on the earth under the same solar lighting questions. That requires that the nodal regression rate must equal the mean rate of revolution around the sun. Since the earth rotates in the same direction about its axis as it does about the sun, the natural nodal regression is prograde. The orbit of the satellite must therefore result in a retrograde nodal regression of the same magnitude. The sun-synchronous orbit is selected to have an inclination and altitude that will result in a nodal regression of -0.985 degrees/day. As can be seen in figure A-19 a satellite in an 800 km orbit must have an inclination of approximately 980 to maintain a sun-synchronous orientation.
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Figure A-20: Sun Synchronous Orbits

Perigee rotation rate is also affected by the oblateness of the earth. Figure A-21 shows how the perigee rotation rate scales with orbit size, a, orbit inclination, i, and orbit shape, e. 
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Figure A-21: Perigee Rotation Rate
There are two critical inclinations where the rate of perigee rotation is equal to zero. At 63.40 and 116.60 the location of the perigee in an orbit plane will remain constant. Figure A-22 shows the ground track of a Molniya orbit that was used by Soviet Union to maintain constant orbital parameters for satellites designed to provide long periods of northern hemisphere surveillance in highly elliptical orbits.
[image: image75.png]=

S

%

==

=

<
<

=
|
SN ST

374

4

kS

=
53

|

88888





Figure A-22: Molniya Orbit
Propulsion

Rocket propulsion is an application of the Law of Conservation of Linear Momentum and Newton’s Law.  The sum of the linear momentum of all of the fast moving particles exiting the rocket motor must be equal to the linear momentum of the rocket in the other direction.  In the case of a thermochemical rocket, there is a controlled explosion with an exit nozzle as illustrated in Figure A-23.
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Figure A-23: Thermochemical Rocket Motor

The thrust equation is:
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            Ve = exit velocity (m/s)

            Pe = exit pressure (Pa)

            Pa = ambient pressure (Pa)

            Ae = nozzle exit area (m2)

A measure of the efficiency of a rocket motor is specific impulse which is defined as;  
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The result is:
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Usually high specific impulse engines have low thrust and visa versa.  The V produced by a rocket motor relative to the initial mass and final mass of the rocket can be found from the equation: 
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Spacecraft Design
Spacecraft design is dictated by the mission it will perform.  This section outlines the considerations in designing a remote sensing spacecraft.  The primary considerations are how well do you want to see an object and how wide of a field of view is required for the mission.  How well the object is observed is a function of the resolution of the detector and the atmospheric transmission of the electromagnetic radiation being detected.  The atmospheric transmission of various electromagnetic wavelengths is given in Figure A-24.
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The resolution of the sensor is a function of the altitude, wavelength being detected and the diameter of the aperture of the sensor.  The basic equation is:

Resolution 
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Therefore under normal conditions to have better resolution requires lower altitude, shorter wavelengths, and larger diameter apertures of the sensor.  Usually the wavelength of interest is part of the mission and cannot be changed.  Objects are black-body radiators which peak at a wavelength predicted by 
Wien’s Displacement Law:
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where T is temperature in Kelvin.
See figure A-25 for the shape of the black-body radiation curve. 


[image: image88.emf]
Figure A-25: Black-body Radiation Curve

For example the primary wavelength emitted by humans is approximately at 10 (m, while if the requirement is to detect forest fires, at a temperature of 1160 K, the wavelength of interest is 2.50 (m.  The resolution is also limited by the number and size of the pixels of the detector.  It turns out there are modern techniques which give better resolution for smaller apertures, but they are beyond the scope of this appendix.
The next consideration is how wide an area (swath width) is required to be observed by the mission?
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Figure A-26: FOV and Swath Width

The equations that relates altitude, detector size and swath width are illustrated in figure A-27. 
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Figure A- 27Ground Resolution Versus Angular Resolution
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Where:
SW = Swath Width

Rg  = Radius of Ground Observed
h = Altitude

rd = Radius of Detector

fl = Focal Length of Detector




Launch 

Access to space is provided by solid, liquid, and hybrid-fueled rockets. Figure A-28 defines the variables used describing rocket launches and the capabilities necessary to reach orbit.
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The launch angles for access to either the ascending node (AN) or descending node (DN) are:           


[image: image95.wmf] 

g

 

=

 

b

 

AN

 



[image: image96.wmf]g

-

°

=

b

180

DN


The launch wait sidereal time for ascending node (LWSTAN) and descending node (LWSTDN) are:
LWSTAN=(+(

LWSTDN=(+180-(
[image: image97.png]Launch Azimuth. .
‘The launch azimuth, B, is the angle from true north (at the launch-site longitude line) clockwise to the launch direction.
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Figure A-28: Definition of Launch Azimuth
The region of space that can be accessed from a particular launch site is a function of the site latitude and the surrounding geography. Figure A-29 shows the launch azimuths and orbit inclinations that are directly accessible from the Eastern Test Range (Kennedy Space Center) and the Western Test Range (Vandenberg Air Force Base).
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Figure A-29: Available Launch Azimuths
Figure A-30 shows how the burnout velocity of the rocket is related to the location of the launch site and the orbital parameters at the time of insertion. The burnout velocity of the rocket is the orbital velocity of the satellite at that location. For a circular orbit the equation reduces to:
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Figure A-30: Launch Vehicle Burnout Conditions
Figure A-31 shows how burnout velocity and the SEZ (South, East, Zenith) coordinate system are related.
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Figure A- 31: Converting Velocity at Burnout to SEZ Coordinates
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Calculating the total V required by the rocket to attain an orbit is shown in figure A-32. 
The velocity of the launch site is:
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The gravitational loss that must be overcome is:
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The design V needed to reach orbit is therefore:
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Figure A-32: V Needed to Access Orbit
Summary

This brief introduction to astronautics is a very cryptic description of a complex field of study.  The reader is strongly urged to use this as a stepping stone to seriously reading Understanding Space:  An Introduction to Astronautics by Jerry J. Sellers.  Even this excellent text is only an introduction.  Only well developed computer programs take into account most of the perturbations that affect the motion of objects in space.  In fairness, a testament to the accuracy of present day calculations, is the accuracy of the collision of the NASA Deep Impact space probe with the comet Tempel 1.  After traveling 429 million kilometers in 174 days, the probe impacted the comet within a few kilometers of the desired ground zero.   
A310 EQUATION SHEET  
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Re-entry  
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