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ABSTRACT

Output variables of linear dynamic systems subject to
random inputs are often quantified by mean sguare
calculations. Computationally, these involve integration of
the frequency response magnitude squared over all
frequency. Numericaly, this is an easy task and
analytically, methods exist to find mean square values as
functions of transfer function (frequency response)
coefficients. This paper develops further analytical
techniques to calculate mean-square val ues as functions of
system pole-zero locations and as functions of eigen-
properties and system matrices. These other analytical
representations may provide paths to further insight into
dynamic system response and optimal design/tuning of
dynamic systems.

INTRODUCTION

Vibratory systems often are excited by inputs that can
be approximated as “white” in frequency content. In other
cases, white noise inputs processed through linear filters
approximate inputs or disturbances to such systems.
Choosing design parameters and/or feedback control gains
for such systems can entail examining mean-square
responses of key performance variables and tuning for
some optimum or allowabl e trade-offs.

For example, ground vehicle suspensions excited by
roadway unevenness are typically tuned for body
acceleration or jerk (weighted over frequency perhaps),
suspension travel, road-tire contact force, and other
performances. Parameters such as spring and shock

coefficients, tire stiffness and unsprung mass, and active
control gains can be optimized for performance including
reguired control power.

Calculating these average responses for linear systems
can always be done numericaly since they involve
integrating under the squared magnitude of a frequency
response function. With known techniques, these
responses can also be found analytically using frequency
response coefficients. The advantage of the analytical
techniques is the possible insight gained and the global
relationships derived between parameters and response.

The purpose of this work is to develop further
analytical relationships between system poles and zeros,
eigen-properties, and dynamic system matrices; and mean-
square performance. The hope is that these relationships
will give increased understanding into dynamic system
behavior and tuning of optimal systems.

The paper is in three main sections. The first reviews
the relationship between transfer function coefficients and
mean-square response. The second section relates pole and
zero locations to response, and the third section develops
mean-square response in terms of eigen-properties and
system matrices.
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MEAN-SQUARE RESPONSE TO WHITE NOISE
INPUTS

Spectral density theory [1] shows that the mean-
square output of a linear system, E[y?]%, is the following
function of the spectral density of the input and the
frequency response magnitude squarec’.
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G(s)|s=iw is frequency response, y is output, U is input and
Suy(w) is the spectral density of the input. If the input

spectral density can be approximated as white noise so that
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Su(W)=So (a constant), only the integral dG(iW)|2dW
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requires determination. The following sections detail three

approaches to the analytical calculation of this magnitude

squared integral.

E[y2] AS A FUNCTION OF TRANSFER FUNCTION
COEFFICIENTS

Since frequency response (transfer function)
coefficients are typically functions of dynamic system
parameters, it can be very useful to calculate
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(‘jG(iw)|2dw as a function of these coefficients. James
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et. a. [2] developed these functions for up to order seven
frequency response functions and they have served good
use to this day. Both [1] and [2] have these functions in
appendices.

For example, given
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L E[. ] isthe expectation operator andy is the output
variable.

2 |- | denotes magnitude.
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Functions such as these have been used by Redfield
and Karnopp [3], Redfield [4], and Karnopp [5] to
calculate vehicle suspension mean-square response to a
random roadway input and for determining optimum
tuning of suspensions with trade-offs between ride,
suspension travel, and tire contact forces. The following
sections cal cul ate these integral s with alternative methods.

E[y2] AS A FUNCTION OF POLES AND ZEROS

Development
This section develops the relationship between pole-

zero locations and mean-square response. These
relationships may facilitate further understanding of
dynamic system behavior and optimal tuning. The thrust of
this work is to develop the functions and leave significant
interpretation to future study.

We will write the transfer function, G(s), as a rational
function with a gain, k, factored zeros, z, and factored
eigenvalues, | ; (poles) in equation 6.

Q
O(s- z))
G(s) = k’;l— ©6)

O (s- 1)
i=

The frequency response, G(w), is found by lettings® iw.
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The magnitude squared of the transfer function is the

product of G(iw) with its complex conjugate G (iw) and
can be calculated as shown in equation 8.

|G(iw)| 2 =G(w)G” (iw) = G(w)G(- iw) 3 (8)

From equation 7, magnitude squared becomes

3 Because all complex factors arise as complex conjugates,
the conjugate can be calcul ated with the negative
argument.
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This can be written in factored form ready for integration
by the theory of residues[1] in Equation 10.
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From residue theory with a contour around the closed,
upper-haf w-plane, the integral of the magnitude squared
over al frequency is
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where the G are residues of the rational function
|G(iw)|2 and defined as

C; = res |G(iw)° = lim (il Deiw)? 12

w=-il

As a short explanation of which poles were used for
residue calculations, consider that the eigenvalues of the
original transfer function must lie in the closed left hand
plane. Any poles on the imaginary axis or right-half plane
would contribute to an infinite response from a random
input. Transforming from the | -plane to the w-plane, with
the mapping w = -li, maps the closed, left-half | -plane to
the closed, upper-haf w-plane. A counter-clockwise
contour around this region provides the line integral from
which theintegral of equation 11 can be determined.

Summing residues in this fashion for equation 11
results in equation 13 for the integral of the magnitude
squared as afunction of the pole and zero locations.
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Equation 13 is applied for up to second order transfer
functions in Table 1 and third order transfer functions in
Table A1l in Appendix A. Real and complex zeros and
poles are included. The transfer functions in Table 1 have

been modified such that the new gain, Kk, is the DC gain of
the transfer function. This makes the distinction between
pole and gain effects on mean-square response more
meaningful. Table A1, has not been altered in this manner.

Table 1- 1% And 2" Order Frequency Response
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Comments

Some initial interpretation of these results can be
applied to Table 1. For a simple pole, E [y?] goes as gain
squared and directly with pole location. A higher break
frequency leads to a higher mean-square. This would have
implications for system time constant and required power
in a feedback system. Looking at second order,
underdamped poles, E[y?] goes directly with natural
frequency and inversely with damping ratio. It is probable
that interesting conclusions could be drawn from further
examination of these results. The “cost” of moving poles
and zeros or changing natural frequency and damping
ratios can be weighed versus changing performance.

E[y2] AS A FUNCTION OF EIGEN-PROPERTIES
AND SYSTEM MATRICES

Development
Mean-square values can also be derived as functions

of eigen-properties and system matrices. This may lead to
the understanding of a modal contribution to random
response.

Defining eigenvalues as %, right eigenvectors as gand
normalized left eigenvectors as v, the spectra
decomposition [6] of atransfer function is asfollows:



G(s) =¢' éfl b (14)

¢; and b are the system output and input weighting vectors
from a state-space realization. The frequency response is
again found by letting s? iw giving G(iw). The magnitude
squared of the frequency response is G(iw) G(iw)* where
the superscript *, denotes complex conjugate.
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Integrating the magnitude squared over all frequencies
leads to mean-square values. We calculate this by the
theory of residues as before.
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The complex conjugate goes away for rea eigen-
properties. It also goes away for complex eigen-properties
because the sum is over all eigenvalues and eigenvectors
which occur in conjugate pairs. Factoring the series gives
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The second summation can be simplified recognizing that
(hl+Re; =0+ e, (19)

boi ng some algebra, right multiplying equation 19 by the
jth normalized right eigenvector, and summing gives:
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The summation on the right becomes ev' and thus the

identity matrix | where e and V' are modal matrices.

a—=(,1+A)" 1)

Therefore, the integral under the magnitude squared in
equation 18 becomes
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If desired, Equation 22 can also be written strictly in
terms of eigenvectors and eigenvalues.

(23)

L isthe diagonal matrix of eigenvaluesand A=eL v'.
Also, middle terms in the summation of Equation 22

arethe scalar, rational function in Equation 24.

c(l d+A) D=-G(-1,) (24)

and the magnitude-squared integral is written in terms of
the transfer function.
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Comments

Equation 25, in some sense, gives modal contributions
to the mean-square response. As an example, the mean-
square tire contact force in a two degree of
freedom,actively damped, vehicle model (Figure 1) is
calculated as afunction of the passive damping coefficient,
Bp. The roadway is assumed random in roughness and
active damping is included such that the control forceis F,
= B,V. The transfer function between vertical contact point
velocity, Vg, and tireforceis givenin Appendix B.
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Figure 1- 2 DOF (Quarter car) Suspension Model

Figure 2 shows the total mean-square response in the
solid circles and the modal contributions in the hollow
shapes and stars. For low damping, both modes are
complex (as seen by superimposed contributions) and one
mode significantly contributes to the total response. For
higher damping, one complex and two real modes evolve.
The complex mode again dominates the response. Near the
break between all complex and complex and real modes,
all modes contribute with one real mode much more than
the other.
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Figure 2 — Modal Contributions To Mean Square Tire
Contact Force
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CONCLUSIONS

Rel ationships have been developed relating poles and
zeros, and system eigen-properties to mean sguare
calculations of system output variables. It is hoped that
these representations will lead to additional insights into
the relationship between system properties and system
performance. For example, how do you place poles and
zeros to minimize or maximize mean-square response
given other design constraints (such as power)? How do
mode shapes (eigenvectors) contribute to response? For
example, for one and two degree of freedom vehicle
suspension models, the author has found that optimal
active damping leads to a suspension tuning that cancels
the dynamic effect of the suspension stiffness.
Mathematically this results in a pole-zero cancellation and
a reduction in system order for particular input/output
transfer functions. The contribution of one mode to
response vanishes as the optima parameters are
approached. Future work may examine how these new,
mean-square relationships can increase insight into
dynamic system design and optimal parameter (and
feedback) selection.
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APPENDIX A — Third Order Results

Table A1— 3" Order Frequency Response Integrals
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