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ABSTRACT 

Output variables of linear dynamic systems subject to 
random inputs are often quantified by mean square 
calculations. Computationally, these involve integration of 
the frequency response magnitude squared over all 
frequency. Numerically, this is an easy task and 
analytically, methods exist to find mean square values as 
functions of transfer function (frequency response) 
coefficients. This paper develops further analytical 
techniques to calculate mean-square values as functions of 
system pole-zero locations and as functions of eigen-
properties and system matrices. These other analytical 
representations may provide paths to further insight into 
dynamic system response and optimal design/tuning of 
dynamic systems. 
 
 
INTRODUCTION 

Vibratory systems often are excited by inputs that can 
be approximated as “white” in frequency content. In other 
cases, white noise inputs processed through linear filters 
approximate inputs or disturbances to such systems. 
Choosing design parameters and/or feedback control gains 
for such systems can entail examining mean-square 
responses of key performance variables and tuning for 
some optimum or allowable trade-offs.  

For example, ground vehicle suspensions excited by 
roadway unevenness are typically tuned for body 
acceleration or jerk (weighted over frequency perhaps), 
suspension travel, road-tire contact force, and other 
performances. Parameters such as spring and shock 

coefficients, tire stiffness and unsprung mass, and active 
control gains can be optimized for performance including 
required control power. 

Calculating these average responses for linear systems 
can always be done numerically since they involve 
integrating under the squared magnitude of a frequency 
response function.  With known techniques, these 
responses can also be found analytically using frequency 
response coefficients. The advantage of the analytical 
techniques is the possible insight gained and the global 
relationships derived between parameters and response. 
 

The purpose of this work is to develop further 
analytical relationships between system poles and zeros, 
eigen-properties, and dynamic system matrices; and mean-
square performance. The hope is that these relationships 
will give increased understanding into dynamic system 
behavior and tuning of optimal systems. 

The paper is in three main sections. The first reviews 
the relationship between transfer function coefficients and 
mean-square response. The second section relates pole and 
zero locations to response, and the third section develops 
mean-square response in terms of eigen-properties and 
system matrices. 
 



  

 
MEAN-SQUARE RESPONSE TO WHITE NOISE 
INPUTS 

Spectral density theory [1] shows that the mean-
square output of a linear system, E[y2]1, is the following 
function of the spectral density of the input and the 
frequency response magnitude squared2. 
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G(s)|s=iω is frequency response, y is output, U is input and 
SU(ω) is the spectral density of the input. If the input 
spectral density can be approximated as white noise so that 

SU(ω)=SO (a constant), only the integral ∫
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requires determination. The following sections detail three 
approaches to the analytical calculation of this magnitude 
squared integral. 
 
 
E[y2] AS A FUNCTION OF TRANSFER FUNCTION 
COEFFICIENTS 

Since frequency response (transfer function) 
coefficients are typically functions of dynamic system 
parameters, it can be very useful to calculate 
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ωω diG 2)(  as a function of these coefficients. James 

et. al. [2] developed these functions for up to order seven 
frequency response functions and they have served good 
use to this day. Both [1] and [2] have these functions in 
appendices. 
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1 E[•] is the expectation operator and y is the output 
variable. 
2 |•| denotes magnitude. 
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Functions such as these have been used by Redfield 

and Karnopp [3], Redfield [4], and Karnopp [5] to 
calculate vehicle suspension mean-square response to a 
random roadway input and for determining optimum 
tuning of suspensions with trade-offs between ride, 
suspension travel, and tire contact forces. The following 
sections calculate these integrals with alternative methods. 
 
 
E[y2] AS A FUNCTION OF POLES AND ZEROS 
 
Development 

This section develops the relationship between pole-
zero locations and mean-square response. These 
relationships may facilitate further understanding of 
dynamic system behavior and optimal tuning. The thrust of 
this work is to develop the functions and leave significant 
interpretation to future study. 

We will write the transfer function, G(s), as a rational 
function with a gain, k , factored zeros, zj, and factored 
eigenvalues, λi (poles) in equation 6. 
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The frequency response, G(ω), is found by letting s → iω. 
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The magnitude squared of the transfer function is the 
product of G(iω) with its complex conjugate G*(iω) and 
can be calculated as shown in equation 8. 
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From equation 7, magnitude squared becomes 
 

                                                 
3 Because all complex factors arise as complex conjugates, 
the conjugate can be calculated with the negative 
argument. 
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This can be written in factored form ready for integration 
by the theory of residues [1] in Equation 10. 
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From residue theory with a contour around the closed, 
upper-half ω-plane, the integral of the magnitude squared 
over all frequency is  
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where the Cj are residues of the rational function 

2)( ωiG and defined as 

 
22 )()(lim)( ωλωω

λωλω
iGiiGresC j

ii
j

jj

+==
−→−=

 (12) 

 
As a short explanation of which poles were used for 

residue calculations, consider that the eigenvalues of the 
original transfer function must lie in the closed left hand 
plane. Any poles on the imaginary axis or right-half plane 
would contribute to an infinite response from a random 
input. Transforming from the λ-plane to the ω-plane, with 
the mapping ω = -λi, maps the closed, left-half λ-plane to 
the closed, upper-half ω-plane. A counter-clockwise 
contour around this region provides the line integral from 
which the integral of equation 11 can be determined. 

Summing residues in this fashion for equation 11 
results in equation 13 for the integral of the magnitude 
squared as a function of the pole and zero locations. 
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Equation 13 is applied for up to second order transfer 

functions in Table 1 and third order transfer functions in 
Table A1 in Appendix A. Real and complex zeros and 
poles are included. The transfer functions in Table 1 have 

been modified such that the new gain, k*, is the DC gain of 
the transfer function. This makes the dis tinction between 
pole and gain effects on mean-square response more 
meaningful. Table A1, has not been altered in this manner.    

 
Table 1 – 1st And 2nd Order Frequency Response 

Integrals 
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Comments 

Some initial interpretation of these results can be 
applied to Table 1. For a simple pole, E [y2] goes as gain 
squared and directly with pole location. A higher break 
frequency leads to a higher mean-square. This would have 
implications for system time constant and required power 
in a feedback system. Looking at second order, 
underdamped poles, E[y2] goes directly with natural 
frequency and inversely with damping ratio. It is probable 
that interesting conclusions could be drawn from further 
examination of these results. The “cost” of moving poles 
and zeros or changing natural frequency and damping 
ratios can be weighed versus changing performance. 
 
 
E[y2] AS A FUNCTION OF EIGEN-PROPERTIES 
AND SYSTEM MATRICES 
 
Development 

Mean-square values can also be derived as functions 
of eigen-properties and system matrices. This may lead to 
the understanding of a modal contribution to random 
response. 

Defining eigenvalues as ?k, right eigenvectors as ek and 
normalized left eigenvectors as vk

t, the spectral 
decomposition [6] of a transfer function is as follows: 
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ct and b are the system output and input weighting vectors 
from a state-space realization. The frequency response is 
again found by letting s? iω  giving G(iω). The magnitude 
squared of the frequency response is G(iω) G(iω)* where 
the superscript *, denotes complex conjugate. 
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Integrating the magnitude squared over all frequencies 

leads to mean-square values. We calculate this by the 
theory of residues as before. 
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The complex conjugate goes away for real eigen-
properties. It also goes away for complex eigen-properties 
because the sum is over all eigenvalues and eigenvectors 
which occur in conjugate pairs. Factoring the series gives 
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The second summation can be simplified recognizing that 
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. 
Doing some algebra, right multiplying equation 19 by the 
jth normalized right eigenvector, and summing gives: 
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The summation on the right becomes tvε  and thus the 

identity matrix I where ε and tv  are modal matrices. 
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Therefore, the integral under the magnitude squared in 
equation 18 becomes 
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If desired, Equation 22 can also be written strictly in 

terms of eigenvectors and eigenvalues. 
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Λ is the diagonal matrix of eigenvalues and tvA Λ= ε .  
Also, middle terms in the summation of Equation 22 

are the scalar, rational function in Equation 24. 
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and the magnitude-squared integral is written in terms of 
the transfer function. 
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Comments 

Equation 25, in some sense, gives modal contributions 
to the mean-square response. As an example, the mean-
square tire contact force in a two degree of 
freedom,actively damped, vehicle model (Figure 1) is 
calculated as a function of the passive damping coefficient, 
Bp. The roadway is assumed random in roughness and 
active damping is included such that the control force is Fa 
= BaV. The transfer function between vertical contact point 
velocity, V0, and tire force is given in Appendix B. 
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Figure 1 - 2 DOF (Quarter car) Suspension Model 

 
Figure 2 shows the total mean-square response in the 

solid circles and the modal contributions in the hollow 
shapes and stars. For low damping, both modes are 
complex (as seen by superimposed contributions) and one 
mode significantly contributes to the total response. For 
higher damping, one complex and two real modes evolve. 
The complex mode again dominates the response. Near the 
break between all complex and complex and real modes, 
all modes contribute with one real mode much more than 
the other. 
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Figure 2 – Modal Contributions To Mean Square Tire 

Contact Force 
 
 

CONCLUSIONS 
Relationships have been developed relating poles and 

zeros, and system eigen-properties to mean square 
calculations of system output variables. It is hoped that 
these representations will lead to additional insights into 
the relationship between system properties and system 
performance. For example, how do you place poles and 
zeros to minimize or maximize mean-square response 
given other design constraints (such as power)? How do 
mode shapes (eigenvectors) contribute to response? For 
example, for one and two degree of freedom vehicle 
suspension models, the author has found that optimal 
active damping leads to a suspension tuning that cancels 
the dynamic effect of the suspension stiffness. 
Mathematically this results in a pole-zero cancellation and 
a reduction in system order for particular input/output 
transfer functions. The contribution of one mode to 
response vanishes as the optimal parameters are 
approached. Future work may examine how these new, 
mean-square relationships can increase insight into 
dynamic system design and optimal parameter (and 
feedback) selection. 
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APPENDIX A – Third Order Results 
 

 

 
Table A1 – 3rd Order Frequency Response Integrals 
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APPENDIX B – Tire Force Transfer Function 
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